Scimago Lab
powered by Scopus
eISSN: 1941-5923
call: +1.631.629.4328
Mon-Fri 10 am - 2 pm EST


Medical Science Monitor Basic Research


Levetiracetam Pharmacokinetics in a Patient with Intracranial Hemorrhage Undergoing Continuous Veno-Venous Hemofiltration

Unusual or unexpected effect of treatment, Unexpected drug reaction , Educational Purpose (only if useful for a systematic review or synthesis)

Edward T. Van Matre, Scott W. Mueller, Douglas N. Fish, Robert MacLaren, Luis F. Cava, Robert T. Neumann, Tyree H. Kiser

USA Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA

Am J Case Rep 2017; 18:458-462

DOI: 10.12659/AJCR.902709

Available online:

Published: 2017-04-27


BACKGROUND: Levetiracetam is an antiepileptic drug frequently used in critically ill patients. Levetiracetam is primarily eliminated as a parent compound via glomerular filtration and requires dose adjustment in renal insufficiency, but the literature on patients receiving continuous veno-venous hemofiltration (CVVH) is scant.
CASE REPORT: We report the levetiracetam pharmacokinetic profile of a patient being treated with levetiracetam 1000 mg intravenously every 12 h who required continuous veno-venous hemofiltration (CVVH). The patient underwent CVVH utilizing a high-flux polyethersulfone membrane filter. The blood flow rate was 250 ml/min, and the predilution replacement therapy fluid flow rate was 2000 ml/h. After achieving presumed steady-state on levetiracetam 1000 mg q12h, serial plasma samples (pre- and post-filter) and effluent samples were drawn at 2, 4, 6, 8, and 10 h. Levetiracetam concentrations were determined utilizing LC-MS/MS. The levetiracetam maximum concentration (Cmax), minimum concentration (Cmin), half-life, area under the concentration-time curve (AUC0–12), clearance (CL), and volume of distribution (Vd) were 30.7 µg/ml, 16.1 µg/ml, 12.9 h, 272 mg·hr/L, 3.68 L/h, and 0.73 L/kg, respectively. The sieving coefficient was 1.03±0.08. CVVH represented 61.3% of the total levetiracetam clearance. The patient was maintained on CVVH for 24 consecutive days and then transitioned to intermittent hemodialysis and remained seizure-free.
CONCLUSIONS: CVVH is highly effective in removing levetiracetam from circulating plasma. Due to the effective removal, standard doses of levetiracetam are required to maintain adequate plasma concentrations. Dose reductions utilizing HD or estimated creatinine clearance recommendations will likely lead to subtherapeutic levels, especially if higher CVVH flow rates are used.

Keywords: Anticonvulsants, Critical Care, Dialysis, Hemofiltration, Pharmacokinetics