Scimago Lab
powered by Scopus
eISSN: 1941-5923
call: +1.631.629.4328
Mon-Fri 10 am - 2 pm EST


Medical Science Monitor Basic Research


Get your full text copy in PDF

Improved Detection of Culprit Pathogens by Bacterial DNA Sequencing Affects Antibiotic Management Decisions in Severe Pneumonia

Daniel G. Dunlap, Christopher W. Marshall, Adam Fitch, Sarah F. Rapport, Vaughn S. Cooper, Bryan J. McVerry, Alison Morris, Georgios D. Kitsios

(Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA)

Am J Case Rep 2018; 19:1405-1409

DOI: 10.12659/AJCR.912055

BACKGROUND: Severe pneumonia requiring admission to an intensive care unit carries high morbidity and mortality. Evidence-based management includes early administration of empiric antibiotics against plausible bacterial pathogens while awaiting results of microbiologic cultures. However, in over 60% of pneumonia cases, no causative pathogen is identified with conventional diagnostic techniques. In this case report, we demonstrate how direct-from-sample sequencing of bacterial DNA could have identified the multiple culprit pathogens early in the disease course to guide appropriate antibiotic management.
CASE REPORT: A previously healthy, 21-year-old man presented with neck pain and fever and rapidly developed acute respiratory distress syndrome (ARDS) requiring mechanical ventilation. He was started on broad-spectrum antibiotics and was found to have septic thrombophlebitis of the left internal jugular vein (Lemierre syndrome), with blood cultures growing Fusobacterium necrophorum. While his antibiotics were narrowed to piperacillin-tazobactam monotherapy, his clinical condition worsened, but repeated efforts to define an additional/alternative respiratory pathogen resulted in negative cultures. He eventually developed bilateral empyemas growing Mycoplasma hominis. Once azithromycin was added to the patient’s regimen, he improved dramatically. Retrospective sequencing of consecutive endotracheal aspirates showed Fusobacterium as the dominant pathogen early in the course, but with significant and increasing Mycoplasma abundance several days prior to clinical detection.
CONCLUSIONS: Had sequencing information been available to the treating clinicians, the causative pathogens could have been detected earlier, guiding appropriate antibiotic therapy and perhaps preventing his clinical complications. Real-time bacterial DNA sequencing has the potential to shift the diagnostic paradigm in severe pneumonia.

Keywords: Lemierre Syndrome, Pneumonia, Sequence Analysis, DNA, acute respiratory distress syndrome

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree