H-Index
18
Scimago Lab
powered by Scopus
eISSN: 1941-5923
call: +1.631.629.4328
Mon-Fri 10 am - 2 pm EST

Logo

MSMbanner
Medical Science Monitor Basic Research

Annals
ISI-Home

Get your full text copy in PDF

Weill-Marchesani Syndrome, a Rare Presentation of Severe Short Stature with Review of the Literature

Mossa N.A. Al Motawa, Manal S.S. Al Shehri, Majed J. Al Buali, Amnah A.M. Al Agnam

(Department of Pediatrics, King Faisal General Hospital, Al Hassa, Saudi Arabia)

Am J Case Rep 2021; 22:e930824

DOI: 10.12659/AJCR.930824


BACKGROUND: Short stature is the second most common reason for referral to a pediatric endocrinology clinic. Numerous genetic causes have been identified. Weill-Marchesani syndrome (WMS) is one of the rare genetic disorders that cause short stature. It is caused by homozygous mutations in the FBN1 gene, ADAMTS10 gene, ADAMTS17 gene, or LTBP2 gene. Despite genetic heterogeneity, WMS is clinically homogeneous. It is characterized by short stature, brachydactyly, joint stiffness, ocular abnormalities, mainly microspherophakia and glaucoma, and occasionally cardiac defects.
CASE REPORT: A 9-year-old boy had bilateral narrow-angle glaucoma with lens subluxation, elevated intraocular pressure, and severe myopia since early childhood. He had phenotypic dysmorphic features and radiological findings consistent with WMS. He underwent lensectomy and scleral-fixated intraocular lens implantation as well as drug treatment to control the intraocular pressure. He was a slow grower, and his growth parameters showed disproportionate short stature with brachydactyly and joint stiffness. Growth hormone provocation tests were subnormal with a peak value of 7.89 ng/mL.
CONCLUSIONS: The constellation of clinical presentation, radiological findings, and the molecular examination confirmed a homozygous familial variant of the ADAMTS10 gene identified by carrier gene testing. This known familial variant creates a premature termination codon classified as a likely pathogenic cause of WMS. In this syndrome, glaucoma treatment is considered the greatest challenge. The disease-causing mechanism in WMS is not known but thought to be due to abnormal actin distribution and organization in fibroblasts as a result of impaired connections between extracellular matrix components and the cytoskeleton.

Keywords: ADAM Proteins, Child, Homozygote, Weill-Marchesani Syndrome

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree